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Abstract. Results of examination of experimental data on nonlinear elasticity of rocks using experimental pressure-

dependences of P- and S-wave velocities from various literature sources are presented. Overall, over 90 rock samples are 10 

considered. Interpretation of the data is performed using an effective-medium description in which cracks are considered as 

compliant defects (cracks) with independent shear and normal compliances without specifying a particular crack model with 

an a priori given ratio of the compliances. Comparison with the experimental data indicated abundance of cracks (~80%) 

with the normal-to-shear compliance ratios significantly exceeding the values typical of conventionally used crack models 

(such as penny-shape cuts or thin ellipsoidal cracks). Correspondingly, rocks with such cracks demonstrate strongly 15 

decreased Poisson's ratio including a significant portion of rocks (~45%) exhibiting negative Poisson's ratios at lower 

pressures, for which the concentration of not yet closed cracks is maximal. The obtained results indicate the necessity of 

further development of crack models to account the revealed numerous examples of cracks with strong domination of normal 

compliance. Discovering such a significant number of naturally auxetic rocks is in contrast with the conventional viewpoint 

that occurrence of negative Poisson's ratio is an exotic fact that is mostly associated with specially engineered structures. 20 

1 Introduction 

It is widely appreciated that most rocks exhibit strongly increased tensosensitivity, that is giant elastic nonlinearity as 

compared with atomic nonlinearity of homogeneous solids and liquids. A bright manifestation of this nonlinearity is a very 

pronounced dependence of rocks' elastic moduli on applied pressure. The main reasons for this giant nonlinearity is the 

presence of highly compliant cracks and contacts in the relatively hard matrix.  25 

Important features of this "soft-hard paradigm" of giant nonlinearity in microstructured solids [1,2] can be explained by  very 

instructive and simple 1D rheological models in which highly-compliant cracks/contacts correspond to soft elastic 

elements/springs contained in a relatively hard matrix [3,4,5]. Such models can be very useful to elucidate as to why the 

relationship between concentration of the soft inclusions and the resultant nonlinearity level can be non-monotonic Also they 
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can provide some understanding of the origin of frequency dependence of such microstructure-induced nonlinearity as an 

influence of relaxation localised at the same soft defects. Furthermore, those rheological models clearly demonstrate that the 

relaxation properties of the soft defects in addition to the elastic nonlinearity (i.e. tensosensitivity of elastic moduli) 

inevitably lead to pronounced tensosensitivity of dissipation in microstructured solids [6,7] that may exhibit itself as 

dissipative nonlinearity.  5 

Despite usefulness of the above-mentioned 1D models for understanding basic features of the influence of high-compliant 

inclusions on reduction of the elastic modulus and the origin of its giant stress-sensitivity, closer comparison with seismo-

acoustic properties of real rocks require the effective-medium models that more adequately correspond to a 3D character of 

real rocks. Even in the simplest isotropic approximation, rocks are characterised by two independent elastic moduli. The 

most widely used are the bulk modulus, shear modulus determining the velocity of shear S-waves, Young modulus, as well 10 

as the modulus corresponding to the velocity of longitudinal P-waves. Among those moduli any two are independent and the 

other are expressed via the chosen pair of the independent ones.  

Since cracks are the simplest and most important type of compliant defects in consolidated rocks, considerable attention was 

paid to developing models that describe crack-induced variations in elastic moduli. Although such descriptions differ in the 

way of accounting for eventual interaction of cracks (i.e. small-perturbation or approximation of low crack concentrations, 15 

without accounting for mutual crack interaction [8], the so-called self-consistent approach [9] or differential approach [10]), 

the representations of cracks in such models were based on simpe geometries, for which exact expressions were available; 

these describe the stored elastic energy in the presence of shear stress or stress normally directed to the crack plane. In 

particular, the so-called penny-shape cracks or thin elliptical voids with small aspect ratios have been widely used.  

Despite the differences in the methods accounting for interaction of cracks at larger concentrations, in the limiting case of 20 

small crack concentrations all of such models predict identical complementary variations for the chosen independent elastic 

moduli. For example, the chosen crack geometry pre-determines a given very specific proportion between variations in the 

S- and P-wave velocities under hydrostatic pressure. Observations for real rocks, however, often demonstrate different 

proportions between crack-induced variations in the P- and S-wave velocities variations, such that playing with crack 

concentrations in the above-mentioned models in principle cannot help to reach better agreement between the predictions 25 

and observations.  

The fact that variations of moduli inferred from the measured wave velocities require different crack concentrations for 

different moduli (e.g., different concentrations to obtain the values of E and G inferred from the wave velocities), implies 

that real cracks could be characterised by significantly different proportions between their shear and normal compliances. 

Such variability of crack properties in principle cannot be accounted for in conventional effective-medium models based on 30 

cracks modelled as straight cuts of any geometry (e.g., penny-shape) or thin ellipsoidal voids with a small aspect ratio. In 

such conventionally used models the ratio between those compliances is pre-determined and cannot exhibit significant 

variations.  
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This circumstance motivated the development of alternative effective-medium models in which cracks are considered as 

highly compliant defects with independent normal and shear compliances not restricted by a predetermined proportion 

between them. Such an idea was realized in [11] and equivalent expressions (that differ only by a normalization) were 

derived in [12] based on results of [13]. Using results [11], the ratios between normal and shear compliances were extracted 

in [14] from the analysis of pressure dependences of two elastic-wave velocities in three samples. For one of the samples, the 5 

inferred crack characteristics did not differ strongly from the ones obtained using the conventional penny-shape crack 

models, whereas the other two demonstrated 2-4 times stronger dominance of normal compliance of the real defects. 

Furthermore, one of the samples (Weber sandstone studied in [15]) with the highest normal-to-shear compliance ratio of the 

cracks was found to possess negative Poisson's ratio at lower confining pressures (up to 20 MPa). With increasing pressure 

(that caused gradual closing of the cracks) the Poisson's ratio gradually increased towards to the "normal" positive values. 10 

Results [14] demonstrated that properties of real cracks may significantly differ from those implied in the popular model of 

penny-shape cracks. This agrees with some recent works [16,17] where some other facts indicating insufficiency of models 

based on penny-shape cracks are discussed. However, the fairly small number of rocks discussed in those papers did not yet 

allow one to estimate how exotic are samples where the pressure dependence of the moduli is inconsistent with the models 

based on conventional cracks. In what follows, we present results of the examination of pressure dependences for ~90 rocks 15 

[18,19,20] demonstrating that the "unusual" properties of real cracks are quite common. Furthermore, we show that in 

contrast to the common belief the relevance of the conventional crack concept can be considered as an exception, while the 

rocks with negative Poisson's ratio are not rare.. Reliable reconstruction of compliance properties of cracks (that are 

conventionally used in models of linear elastic properties of rocks) requires consideration of nonlinear behaviour of rocks – 

the pressure-induced variation of their elastic properties – in a sufficiently wide pressure range. In the course of this 20 

consideration we will also point out some aspects of rock's nonlinearity (tensosensitivity) that have not been explicitly 

discussed earlier.  

2 Nonlinear variation of rock's elasticity under varying pressure: 1D modelling 

In geophysics elastic nonlinearity of rocks is well appreciated, however when considering nonlinear propagation of elastic 

waves the modelling is often simplified by using 1D approximation starting from 1D constitutive nonlinear stress-strain 25 

relationship in which quadratic in strain nonlinearity is often considered. For the present consideration of nonlinear 

variations of elastic moduli under isotropic hydrostatic compression that affects the state high-compliant defects, the 1D 

description can also be used, for example, in the form with small (quadratic in strain) nonlinear correction to the linear 

stress-stress relationship: 

2)2()2( }1{)( εγεγεεεσ ⋅⋅+⋅=⋅+⋅= MMM ,    (1) 30 

Here M  is the effective modulus of the medium and )2(γ  is a dimensionless nonlinearity parameter characterizing 

variability of the elastic modulus with variations in strain acting in the medium. Strictly speaking, strain is defined with 
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respect to some initial state of the medium, so that the local slope of the dependence around a current degree of deformation 

becomes dependent on strain (and thus stress) and can be considered as an incremental elastic modulus: 

εσε ∂∂= /)(M         (2) 

It is clear that the dimensionless parameter of the quadratic nonlinearity can be expressed as 

σ
εεγ

d

dM
M

Meff 2

1
/)(

2

1)2( =∂∂
⋅

=       (3) 5 

taking into account that the stress (pressure) increment is related to the strain increment as εσ dMd eff ⋅= . 

In contrast to homogeneous materials with weak atomic nonlinearity and the nonlinearity parameter on order of unity 

[21,1,2], in heterogeneous media their nonlinearity can be strongly increased due to the presence of highly compliant defects 

with strongly locally decreased elastic modulus. Due to this fact the strain becomes strongly locally increased at the soft 

defects, which results in a considerable enhancement of their local nonlinear deviation from the linear stress-strain law and, 10 

correspondingly, leads to enhancement of average (macroscopic) nonlinearity of the material.  

Important features of the microstructure-related nonlinearity can be revealed in the framework of the above-mentioned 1D 

description [3,4]. The simplest for understanding is the case of identical compliant defects: if the relative volume content 

(concentration) of such highly compliant defects is υ  and the defects are of the same type, the effective quadratic 

nonlinearity parameter gets strongly increased  15 

22)2(
0

)2( )/1()/1(/ ςυςυγγ ++≈      (4) 

where the small parameter, 1<<ς , characterizes the relative compliance of the compliant defects with respect to the 

homogeneous matrix material; parameter 1~)2(
0γ  characterizes the own weak nonlinearity of the material of the defects. A 

clear example is a liquid with gas bubbles: taken separately the liquid and gas both are weakly nonlinear, but the nonlinearity 

of the mixture may become giant. For sufficiently small compliance parameter 1<<ς  (that may be 43 1010 −− −  for gas-20 

water mixture), the nonlinearity parameter can exhibit giant increase, 1/ )2()2( >>γγ eff , even for small concentrations υ , 

because the combination 2/ςυ  in Eq. (4) may become large. Simultaneously with the increase in the nonlinearity parameter, 

the elastic modulus M  due to the presence of high compliant defects exhibits gradual decrease in comparison with modulus 

0M  of the homogeneous matrix: 

)/1/(1/ 0 ςυ+≈MM ,      (5) 25 

Comparing Eqs. (3) and (4) one can easily notice that even if the decrease in the elastic modulus is small, 1/ <<ςυ , the 

increase in the nonlinearity parameter, Eq. (4) may become significant ( 1/ )2()2( >>γγ eff ), since the combination 2/ςυ  may 

become large even if 1/ <<ςυ . Furthermore, the nonlinearity parameter reaches its maximum value ~ ς/1  for rather small 
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concentration of the defects ςυ = , for which the elastic modulus decreases twice and the interplay between the local strain 

enhancement and the concentration of the defects is optimal [3,4]. 

In contrast to the above-mentioned bubbly liquids, for which the bubbles have the same contrast ς  in compressibility 

relative to the liquid where the existence of clear maximum of the nonlinear parameter in its dependence on bubble 

concentration is a known fact [22,23], for cracked rocks, the presence of maximum nonlinearity at an intermediate 5 

concentration of cracks is not typical. Bearing in mind that for the bulk modulus K  of rocks under hydrostatic compression, 

the 1D description is applicable as far as the normal compliance of cracks is concerned (see below for more details), we note 

that pressure dependences of )(PK  usually demonstrate ever increasing slope dPdK eff /  (i.e., the nonlinearity parameter) 

with reducing confining pressures P  at which the concentration of cracks that are not closed gradually increases. Typical 

examples of )(PK eff  recalculated from experimentally measured P- and S-wave velocities are shown in Fig. 1a for several 10 

sandstone samples that are often discussed in literature [15,19].  

 

Fig. 1. Non-linearity exhibited by dry Navajo, Nugget and Weber sandstones [15,19]: (a) typical dependences )(PK  

recovered from the experimentally measured pressure-dependences of P- and S-wave velocities; (b) the same data 

represented as the pressure dependences for inverse bulk modulus )(1 PK −  shown in the plot with logarithmic 15 

pressure-axis; (c) derivatives 2/)/(/)/1( KdPdKdPKd −=  calculated using the approximating curves (in the form of 

3rd order polynomials). Numbers 1, 2 and 3 denote the data for Navajo, Nugget and Weber sandstones, respectively 

[15,19,20]. The slopes of the approximating straight lines corresponding to normalized Eq. (8) characterize the 

differences in the density of cracks ( 13.0)(
0 ≈ςν  for Navajo, 21.0)(

0 ≈ςν  for Nugget and 7.1)(
0 =ςν  for Weber). The 

dashed line in panel (c) shows the P/1  dependence corresponding to the normalized Eq. (10). The deviation 20 

downwards of curve 3 for Weber in panel (c) is related to pronounced saturation of )(PK  and )(1 PK −  at higher 

pressures clearly visible in panels (a) and (b). 
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This gradual increase in slope dPdK /  with decreasing pressure is quite naturally attributed to a broad distribution of the 

compliant defects over their compliance parameter. Indeed, it is widely accepted that with increasing confining pressure the 

compliant crack-like defects gradually become tightly closed (starting from the most compliant) and do not contribute 

anymore to the rock nonlinearity. This agrees with the known properties of narrow cracks with small aspect ratio 1<<α , for 

which their aspect ratio determines the relative compliance ςα ~ . Such thin cracks are known to get closed under the 5 

average strain αε ~c ; the proportionality coefficient is of  order of unity and its value may somewhat differ as demonstrated 

by the solutions for elliptical cracks [24], tapered non-elliptical cracks [25], etc. Since the strains and applied pressure P  

can be considered roughly proportional, KPcc /≈ε , all these quantities can be considered as being approximately 

proportional to each other: KPcc /~~~ εας ; this will be taken into account in the consideration below.  

For not-identical defects with a distribution in the compliance parameter, Eqs. (3) and (4) should be modified to comprise the 10 

contributions of defects with different compliance parameter ς  [5]: 

)
)(

1/(1/ 0 ∫+≈ ς
ς
ςυ

dKK       (6) 

The equation for the nonlinear parameter can be rewritten as  

∫+≈ ς
ς

ςυγγ d
K

K
2
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0

)2(
2
0 )(

1/      (7) 

It is clear that, by analogy with Eqs. (4) and (5) for identical defects, the modulus reduction and the increase in nonlinearity 15 

are determined by the distribution )(ςυ  of defect concentration over the compliance parameter ς .  

If one consider ranges of pressure maxmin PPP ≤≤  relevant to experiments, quite often this range is from several MPa to 

about 210  MPa, i.e. with relative variation 3015~/ minmax −PP  times, as the examples in Fig. 1 show, the gradually 

closed/opened cracks should be distributed over the compliance parameter with a similar relative range, 

minmaxminmax /~/ PPςς . Since this range in practically relevant cases is not huge (not many orders of magnitude), one can 20 

assume that in the first approximation the function )(ςυ  may be approximated by a uniform distribution, 

.)( )(
0 const≈= ςνςν  for maxmin ςςς ≤≤ . Then one obtains: 
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Practically more useful than Eq. (9) can be a representation in the form of the direct derivative of Eq. (8), 

2/)/(/)/1( KdPdKdPKd −= , that does not involve unknown initial value of the nonlinearity parameter. In view of 

relationship (8) it should be expected in the form  

PdP

dK

K

K )(
0

2
0

ςυ
≈        (10) 

This dependence can be compared with experimental data. Figure 1b shows the pressure dependences for the bulk modulus 5 

of the same samples as in Fig. 1a using logarithmic scale of the pressure axis, for which proportionality to )log(P  should 

look as a straight line. It is clear that in Fig. 1b such straight lines approximate the experimental dependences )(1 PK −  fairly 

well. The trends to saturation closer to maximal and minimal strains are expectable (since the distribution 

.)( )(
0 const≈= ςυςυ  cannot be ideally flat). The slopes of the straight lines in Fig. 1b are determined by )(

0
ςυ  and give clear 

representation on the differences in the characteristic concentrations of the defects for the examined samples. Finally, Fig. 1c 10 

presents, in log-log scale, the derivatives of the approximating curves shown in Fig.1b with a dependence P/1  as a guide. 

Thus Figs. 1b and 1c demonstrate that the simplest approximation of the distribution of the defects by a constant value 

reasonably agrees with the experimental observations in fairly wide range of pressures ( 2010~/ minmax −PP  times).  

3 Inferences from nonlinear variations in elastic moduli of rocks in 3D description 

In the previous section we considered only 1D description that can be quite well applied to the reduction in the bulk modulus 15 

under hydrostatic compression of real rock samples. However, in real 3D rocks even under isotropic hydrostatic compression 

and fairly isotropically oriented cracks, there exist two independent elastic moduli of which the bulk modulus and shear 

modulus are often considered. The crack-like defects with isotropic orientations can also be characterized by two 

independent compliances with respect to normal and shear loading. Using such a representation of cracks like planar defects 

with two compliances that are not a priori predetermined by a particular crack model one can relate the values of different 20 

elastic moduli with the crack effective densities and compliances by analogy with the above considered 1D case. Such 

expressions were obtained in [11] in the form  

)21/(1

1~

3
1
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K       (11) 
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where by analogy with the above-considered 1D case, ∫
−= ςςςυ dN 1

1 )(  is the effective concentration of the normal 25 

compliance and ∫
−= ξξξυ dN 1

2 )(  is a similar quantity for the shear compliance, and ν  is the Poisson's ratio of the matrix 
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rock. For the other moduli, one obtains similar expressions [11]. In these equations the shear compliance is normalized by 

the shear modulus of the rock matrix and the normal compliance is normalized by the Young modulus corresponding to the 

rock deformability under uniaxial stress. Instead of a single dimensionless compliance parameter used in the previous section 

(in fact corresponding to the normal compliance) these expressions contain two compliance parameters representing the 

normal and shear loading characterize the defects. Factors 1/3, 2/5, etc. in Eqs. (11) and (12) are related to spatial averaging 5 

of isotropically oriented defects. 

Similar equations were derived in [12] using basic relations obtained in [13]: 

n

eff

ZKK

K
K

0

.

1

1~
+

==       (13) 

sn

eff

ZGZGG

G
G

05
2

015
4

.

1

1~

++
==     (14) 

In these equations quantities 1Z  and 2Z  characterizing total normal and shear compliances imparted to the rock by cracks 10 

are dimensional (with dimension of inverse modulus). The shear compliance of the defects in both approaches (i.e., Eqs(12) 

and (14)) is similarly compared with the shear elastic modulus of the matrix material. However, the normal compliance in 

Eq. (12) is normalized differently: in [11], the normal compliance of the defects is compared with the Young modulus (i.e. 

the modulus that corresponds to uniaxial stress, so that the compliance parameter ς  of the defects with respect to normal 

uniaxial stress can be expressed as 0/ EEcrack=ς , the latter can be substituted in the expression for ∫
−= ςςςν dNn
1)( ). 15 

Then taking into account conventional relationship )21/(3
1 ν−= EK  between moduli E  and K  [26], the combination 

)21/(3
1 ν−nN  in Eq. (11) can be transformed into the form nn ZKN 03

1 )21/( =− γ  (where 0
1 /)( EdZn ∫

−= ςςςν ). As a 

result, Eq. (11) assumes the form of Eq. (13) in the notations of paper [12], where the normal compliance of the defects is 

normalized using the bulk modulus 0K  of the matrix. This comparison justifies that Eqs. (11) and (13) for the effective bulk 

modulus have the same form as the one-dimensional Eq. (6) discussed in the previous section.  20 

Note further that the total shear compliances sN
5
2  and sZG05

2  in Eq. (12) and (14) have exactly the same meaning (coincide 

quantitatively). Then it can readily be verified that Eqs. (12) and (14) have exactly the same proportions between total 

normal and shear compliances: quantities )1/(15
2 γ+nN  and sN

5
2  in Eq. (12) and quantities nZG015

4  and sZG05
2  in 

Eq.(14)). Thus representations (11), (12) and (13), (14) are equivalent and differ only by notations.  

Assuming that both normal and shear compliances are localized at the same defects (like at penny-shape cracks in 25 

conventional models), the ratio 21 / NNq =  then characterizes the ratio between normal and shear compliances of the crack-

like defects. Taking into account the difference in the normal-compliance normalization, one obtains that 

)1/()/(/~
212

1
21 ν+== NNZZq . Comparing Eqs. (11)-(14) with expressions for elastic-moduli reduction based on penny-
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shape crack model [9,10], one concludes that penny-shape cracks correspond to the ratio of normal and shear compliances 

2~)1)(2( νγ +−=q  or equivalently 1~)2/1(~ ν−=q  [12,13].  

Since different effective elastic moduli are differently related to normal and shear compliances of the compliant defects, 

gradual variation of crack density with pressure should correspond to different trajectories of the point ))(),(( PGPK  on the 

),( GK -plane. They are readily expressed via the velocities PV  and sV  of the longitudinal compressional wave (P-wave) and 5 

shear-wave velocity (S-wave), which are routinely measured in experiments. (Certainly a different pair of independent 

moduli can be in principle used.) Comparing the experimentally obtained trajectory with the one theoretically predicted by 

Eqs. (11)-(14) one can determine the q-ratio for real rocks as illustrated in Fig. 3. Such a representation (for example, in 

),( GK  plane), allows one to exclude intermediate dependences on pressure that in turn dependent on the a priori unknown 

distributions of the cracks over their aspect ratios. The so-plotted single trajectory makes it possible to reduce the freedom in 10 

fitting the two initial experimental curves with additional possibility of scaling pressure axis.  

 

 

Fig. 2. Schematic of determining the q-ratio of crack compliances via re-plotting the P- and S-wave velocities into 

trajectory of the point characterizing the rock properties on the (K,G)-plane. (a) - initial pressure-dependences of 15 

P- and S-wave velocities. (b) - pressure dependences of the normalized bulk and shear moduli derived from the 

wave velocities. (c) - the (K,G) plane representing the normalized moduli plotted one against another and 

superposed theoretical lines with correctly chosen q-ratio (curve 1), about 1.5 times overestimated q-ratio (curve 2) 

and 1.5 times underestimated q-ratio. We emphasize that unknown distributions of cracks over their compliance 

parameters do affect pressure dependencies, but do not affect the so-estimated q-ratio. 20 

 

This approach was discussed in detail in [14] taking as instructive examples experimental data on pressures dependences (in 

the range 2-100 MPa) of P- and S-wave velocities for Navajo, Nugget and Weber sandstones used as examples in Fig. 1 

[15,19]. The performed examination showed that only for dry Navajo sandstone the q-ratio (appeared to be ~2.35) was more 

or less consistent with the expectation 1.2~)1)(2( νν −−=q  for the model of penny-shape cracks with free faces, whereas 25 

for Nugget sandstone it was about twice greater ( 3.4~q ) and even grater for Weber sandstone ( 87~ −q ). The latter 
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sample even demonstrated negative Poisson's ratio for pressures below 20 MPa. For rocks containing compliant inclusions 

with dominating normal compliance ( 21 )1(215 NN νν ++> ), the presence of negative Poisson's ratio is not surprising [11], 

see also [27]: 

sn

sn
eff NN

NN

)1(1

)1(

15
4

5
1

15
2

15
1

. ν
νν

ν
+++
++−

=       (15) 

However, the Weber sandstone containing cracks with significantly increased normal compliance and high concentration of 5 

cracks sufficient for making the Poisson's ratio negative looked as a rather exotic example. Similar conclusions on the 

possibility of negative Poisson's ratio are known for granular materials, in which inter-grain contacts are characterized by 

normal compliance significantly dominating over the shear one. However, traditionally, negative Poisson's ratios are 

considered as rather exotic cases mostly for various artificial microstructured solids [28,29]. 

In what follows we present results of examination of over 90 rock samples, for which data on pressure dependences of P- 10 

and S-wave velocities were taken from [15,18,19]. Figure 3 shows the histogram for the Poisson's ratio calculated from the 

P- and S-wave velocities at the lowest pressure (typically, the available low-pressure data were reported for pressures of 

several MPa, so that evidently for even lower pressures, crack concentrations were even greater). In this examination we did 

not try to specially find some specific examples, nevertheless, about 45% of cracked rocks exhibiting pronounced pressure 

dependences of the elastic-wave velocities demonstrated negative Poisson's ratio in a few (or at least one) lower-pressure 15 

points, where the crack concentration was maximal. Typically the lowest pressures were several MPa and maximal pressures 

were in the range 50-120 MPa.  

 

Figure 3. Histogram for the Poisson's ratios calculated using P- and S-wave velocities for over 90 rocks [15,18,19]. 

Data for minimal pressures (mostly about 8MPa for the available data sets) were used in these calculations. 20 

Increasing pressures led to decrease in crack concentration, so that for all rocks the Poisson's ratios gradually 

became positive. 
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For those samples, the initial pressure dependences of the P- and S-wave velocities were re-plotted in the plane of the 

normalized moduli )
~

,
~

( GK  and the resultant curves were fitted by Eq. (11) and (12) in order to determine the ratio of the 

compliances of the cracks assuming that the trajectory can be described by a constant q-ratio, ./ 21 constNNq ==  This 

approximation is not a priory evident at all, but looks fairly reasonable since the conventional penny-shape cracks indeed 

have the q-ratio independent of the aspect ratio and, therefore, independent of the pressure of opening/closing of such cracks. 5 

For a significant portion of the considered rock samples, the pressure-induced variations for the elastic moduli in the )
~

,
~

( GK  

appeared to be surprisingly well described using the approximation of constant q-ratio.  

It was also found that for two tens of samples, the trajectories could be fairly well fitted by a constant-q curve at higher 

pressures, but noticeably deviated at lower pressures, usually exhibiting trend characteristic for increasing q-ratio. Such 

deviations occurred for samples with both negative and positive Poisson's ratios at low pressures. Therefore, for the moment, 10 

in the histograms shown below to characterize the revealed q-ratios we excluded those samples and retained 71 samples with 

fairly constant q-ratio. 

Figure 4 shows the histogram for distribution over q-ratio among those 71 samples with .constq ≈  A striking feature of this 

histogram is that only the leftmost column (only ~20% of total number of samples) corresponds to 2~q  in notations [11] 

(or 1~~q  in notations [12,13]) that is typical of penny-shape cracks and similar conventionally used crack models. Among 15 

the 71 samples presented in Fig. 4 almost one-half (~48%) exhibits negative Poisson's ratio for maximal crack densities at 

low pressures.  

 

Fig. 4. Distribution over q-ratio for 71 samples with fairly constant q  within the entire pressure ranges including 

rocks with always positive Poisson's ratio together with samples demonstrating negative Poisson's ratio at lower 20 

pressures. The last column includes all samples with 10≥q . 
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Figure 5 shows histograms similar to Fig. 4, but separately for 34 samples demonstrating negative Poisson's ratio at low 

pressures and 37 samples with positive Poisson's ratio in the entire pressure range. As expected from the above-presented 

arguments (see discussion of Eq. (15)), the q-ratios for samples with always positive Poisson's ratio demonstrate the 

distribution shifted towards small q-ratios (Fig. 5b), whereas for samples with negative Poisson's ratio this distribution is 

clearly shifted towards high q-ratios, significantly higher than 2~)1)(2( γγ +−=q  (or 1~~q ) typical of penny-shape cracks 5 

(Fig. 5a).  

 

Fig. 5. Distributions over q-ratio plotted separately for samples from Fig. 4 exhibiting positive and negative Poisson's 

ratios: (a) the histogram for 37 samples with negative Poisson's ratios at lower pressures; (b) case of 35 samples with 

always positive Poisson's ratio. The last column in both panels includes all samples with 10≥q . 10 

 

It should be mentioned that increased q-ratio was also found in the case of samples with always-positive Poisson's ratio (as 

can be seen in Fig. 5b). However, by applying procedures shown in Fig. 2 we verified that for these samples, the crack 

density is significantly smaller than for the rocks exhibiting negative Poisson's ratio. Namely, for rocks with negative 

Poisson's ratio and 105~ −q  or even greater, typically the crack density is 21~)(
0 −ςν , whereas for rocks with similar 15 

increased q-factor, but positive Poisson's ratio even at lowest pressures, the crack density is significantly lower 

2.01.0~)(
0 −ςν .  

4 Conclusions 

In the described analysis of pressure-dependent (i.e. nonlinear) elastic rocks' properties we used approaches [11,14] and 

[12,13] in which the effective-medium model is based on generalized phenomenological representation of cracks as highly 20 

compliant defects whose compliance properties are not a priori predetermined, so that the proportion between the normal 

and shear compliances and their integral amounts can be found from the comparison with experimental data. It should be 
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emphasized that such comparison is essentially based on the usage of numerous data points obtained in fairly wide range of 

pressures. This consideration of the large data sets describing nonlinear behaviour of rocks ensures much better reliability 

and accuracy than comparison of a pair of points (e.g. for two pressure levels).   

The performed examination has indicated that properties of compliant cracks in many rocks reasonably well agree with the 

assumption about uniform distribution .)(
0 const≈ςυ  of the cracks over their compliance parameter (i.e. actually their aspect 5 

ratio), which gives a simple way (actually a single parameter )(
0
ςυ ) for comparison of crack concentrations in different 

samples.  

The usage of the theoretical description [11,12,13,14] with explicitly introduced normal and shear compliances of the defects 

made it possible to determine this ratio for real cracks from the trajectory of ))(),(( PGPK  in the ),( GK  plane. Using the 

literature data on pressure dependences of P- and S-wave velocities [15,18,19], about 90 rock samples were examined. For a 10 

significant portion (~80%) of the samples the q-ratio between the normal and shear compliances appeared to be significantly 

different from what would be predicted by the conventional crack models. These observations agree with some other results 

based on smaller volumes of data [14,16], which also indicates that quite often the conventionally used crack models (like 

the penny-shape one) cannot adequately describe properties of real rocks. In fact for the considered 71 samples that can be 

well described in the approximation of constant q -ratio, it appears that only ~20% of rocks demonstrate 2~q  typical of the 15 

penny-shape cracks.  

Furthermore, the performed examination of pressure dependences for ~90 samples (found in literature without any special 

selection) revealed that a significant portion of samples (about 45%) demonstrated negative Poisson's ratio at low pressures, 

for which concentrations of open cracks were maximal. Such a significant number of naturally auxetic rocks is in contrast 

with the conventional viewpoint that occurrence of negative Poisson's ratio for rocks is an exotic fact [28,30]. Previously 20 

mainly artificial materials with the microstructure engineered to exhibit negative Poisson’s ratio (auxetic materials) were 

discussed in the literature (see e.g., reviews in [29], [31]).  

The performed comparison of q-ratios has shown that for samples exhibiting negative Poisson's ratio, the distribution of 

determined compliance ratios for cracks shows clear distortion towards large q-ratios (strongly dominating normal 

compliance of cracks over their shear compliance). This finding perfectly agrees with theoretical models for crack-25 

containing solids and granular materials, according to which negative Poisson's ratio can be obtained in nearly isotropic 

material only if the cracks or contacts have dominating normal compliances [11,27]. In contrast, for samples with positive 

Poisson's ratio, the determined distributions of q-ratios demonstrated a clear distortion towards small values.  

Overall, the obtained results indicate the necessity of further development of crack models to account the revealed numerous 

examples of rocks with defects demonstrating q-ratios significantly greater than for penny-shape cracks and similar 30 

conventionally used crack models.  
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